
J .  Fluid Mech. (1977), vol. 80, part 3, pp.  465-480 

Printed in Great Britain 

465 
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The effects of inertia on the upstream-growing boundary layer over a finite horizontal 
flat plate of length b moving uniformly with speed U, in a linearly stratified 

[C~P/~Y,-Ca = - P o P ) I ,  

viscous, non-diffusive fluid under the Boussinesq approximation are studied. The 
nonlinear inertia terms are linearized by the Oseen approximation, but no boundary- 
layer approximation is required. The flow is governed by two parameters, namely the 
internal Froude number Fr [ = Uo/(pqb2)*] and a parameter L3 [ = Pqb3/Uov], where 
L-2 is proportional to the ratio of boundary-layer thickness to plate length for the 
case Fr = 0. Large values of L3 and Fr2= 0 correspond to the case of an upstream 
boundary layer. By increasing the Froude number gradually, a transition occurs 
from an upstream boundary layer accompanied by an upstream wake to a downstream 
boundary layer with a downstream wake. The upstream boundary layer and wake are 
characterized by a balance of viscous and buoyancy forces, whereas the downstream 
boundary layer and wake are characterized by a balance of inertia and viscous forces. 
In  the so-called critical-boundary-layer case, Fr4L3 = O( i) ,  inertia, viscous and 
buoyancy forces are all important and this boundary layer is accompanied by both 
upstream and downstream wakes. Complete transition occurs when Fr4Ls increases 
from 10.0 to 1000.0. The drag on the plate is also calculated. 

1. Introduction 
The motion of a density-stratified fluid past obstaclesisof great interest to meteorolo- 

gists and oceanographers. Such flows possess features that are remarkably different 
from those produced in homogeneous fluids. To understand certain basic features of 
stratified flows, many investigators have considered the problem of a flat horizontal 
plate moving in an inviscid, linearly stratified, non-diffusive fluid. In  the work of Yih 
(1959), the plate moves slowly enough that the nonlinear inertia terms can be com- 
pletely neglected in the equations of motion. His solution describes upstream and 
downstream disturbances which do not decay owing to the absence of viscosity. 

Martin & Long (1968) considered the same problem with viscosity. For slow motion 
of the flat plate, they discovered a similarity solution which describes a boundary layer 
whose thickness increases in the upstream direction from the trailing edge of the plate. 
This boundary layer is characterized by a balance of viscous and buoyancy forces and 
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its thickness decreases towards the trailing edge of the plate as the one-fourth power of 
the distance from the trailing edge. This upstream-growing boundary layer stands in 
direct contrast to the more familiar downstream flat-plate boundary layer, which is 
characterized by a balance of inertia and viscous forces, in homogeneous flows. The 
phenomenon of the upstream boundary layer is characteristic of stratified flows and 
certain homogeneous rotating and magnetohydrodynamic flows. In  the upstream 
boundary layer, the streamlines converge towards the trailing edge of the plate rather 
than diverging from the leading edge, as in the case in the Blasius boundary layer. 
Martin & Long also showed that the equation which describes the upstream boundary 
layer describes the upstream wake, but this equation, under the restrictive conditions 
of non-inertial, non-diffusive flow, cannot describe the downstream wake unless one of 
the above restrictions is relaxed. Martin (1966) gives an explanation for this based on a 
vorticity balance argument. 

In their experimental investigation, Martin & Long confirmed the existence of an 
upstream-growing boundary layer under the above restrictions. Owing to limitations 
of their experimental set-up, they could not verify the similarity solution which des- 
cribes the upstream wake. They also attempted to find the effect of inertia on the 
upstream boundary layer. They suspected that, as inertia increases, transition to a 
downstream-growing boundary layer must eventually occur. They towed the plate 
at the highest possible velocity permitted by their experimental set-up, but did not 
observe a downstream-growing boundary layer. Pa0 (1  968) carried out a detailed 
experimental investigation and quantitatively confirmed the similarity solution 
describing the upstream wake. 

During the course of our investigation Kelly & Redekopp (1972) studied stratified 
flow over a flat plate using similarity solutions. They determined that transition would 
occur when Fr4L3 = O( 1)  in terms of the parameters used in this investigation although 
in this parameter regime their similarity techniques fail, The condition Fr4L3 = O( 1) 
is easy to understand. The ratio of vorticity generation by buoyancy to vorticity 
advection in the boundary layer, using the homogeneous boundary-layer thickness, is 
1/Fr4L3; using the Martin & Long boundary-layer thickness this ratio is (Fr4L3)-4. 
Thus if Fr4L3 = O( l),  both advection and generation will be important. This will be 
verified here and the flow in this transitional regime will be computed. 

In  this investigation, we analyse the effect of inertia on the upstream boundary layer. 
Though the problem formulated here is similar to that considered by Kelly & Redekopp, 
our approach in solving it is entirely different. We use an integral approach similar to 
that adopted by Piercy & Winny (1933) and Miyagi (1964) for a homogeneous flow. 
This approach consists of finding the fundamental solution of Oseen’s equation for 
stratified flow induced by a line momentum sink and then distributing these sinks along 
the plate such that the no-slip condition is satisfied on the plate. The solution of 
Oseen’s equation for stratified fluid for a line momentum sink is due to Janowitz 
(1968). We shall use these results extensively in our investigation. 

Quantitatively, our detailed results will not be as accurate as those obtained by 
boundary-layer techniques, where the latter apply, because we shall replace the non- 
linear inertia terms by an Oseen approximation. This model is strictly valid in the far 
field, and near the plate it may serve as a reasonable model for the inertia terms. From 
a qualitative viewpoint our model should be able to predict all the important aspects 
of the problem. I t  should be able to describe the upstream boundary layer, the homo- 
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geneous boundary layer, and the transition from one type to another. In  addition, our 
model will give us a uniformly valid solution; a boundary-layer approximation will 
not be necessary. Thus we hope that our model will provide information about the 
entire flow field. In  addition, it should be able to describe the transitional case in which 
inertia, buoyancy and viscous forces are equally important. 

2. Formulation of the problem and the governing equation 
A plate of length b is fixed in space (figure 1) and a fluid with a uniform speed U, and a 

linear density profile far upstream flows over it. The following are the non-dimensional 
equations which govern the steady two-dimensional flow of a viscous non-diffusive 
fluid under the Oseen model and Boussinesq approximation: 

aplax - v = 0. 
The boundary conditions become 

(4) 

u,v ,p ,p+O as Ix2+y2)+co, 

u(x, 0) = - 1, ~(z, 0) = 0 for 0 ,< x ,< 1, (5) 

where Re, = U,b/v ,  Fr2 = Ui//3gb2, L3 = Reb/Fr2 = $gb3/Uav, 

u = u'/U0, v = v'/Ua, x = d / b ,  = y'/b, p = p'/po&b2, p = p'/po/3b. 

Here, u', v', p' and p' represent the disturbances from the base flow quantities. The 
flow is governed by the two parameters Fr2 and L3. The parameter L3 is the ratio of the 
buoyancy and viscous forces in this forced flow if atax, slay = O( 1). 

In  the governing equation the nonlinear inertia terms have been replaced by an 
Oseen-type linearization which is strictly valid in the far field, where the velocity 
perturbations become small. However, near the plate it should provide a reasonable 
model for inertial effects. Janowitz (1968) used the Oseen model to describe the flow in 
the far field due to a line singularity with finite drag force (a line momentum sink) 
moving with uniform velocity in linearly stratified, viscous fluid. His results are valid 
only in the far field but here they are used to describe the flow everywhere. The flow 
generated by the plate can be considered as being generated by a distribution of drag 
forces on the plate. From Janowitz's result we find that 

u'(x', y',  6') = D'(t-7 J(x' - E', d ) / P ,  

where D' is the drag force per unit width, u' is the dimensional perturbation from a 
uniform velocity at (d,  y ' ) ,  D'(5) is the dimensional drag force acting at  x" = E ' ,  and 
J is a non-dimensional velocity perturbation given below. If we assume that the drag is 
continuously distributed over the entire plate, then we can write 

du' = D"(5') dt'J(x' - E' ,  y ' ) /p ,  
16-2 
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PICURE 1. The geometry of the problem. 

where D"(f')  is the drag per unit width per unit length of the plate. Integrating over the 
entire plate gives 

where J is known from Janowitz's solution. We seek to find a D"(E') such that (5) is 
satisfied. Dividing by Uo b, expression (6) becomes 

We next introduce a stream function $ defined by 

and eliminate pressure and density from the governing equations to obtain the follow- 
ing vorticity equation: 

v2 VZ$.- a$ = 0. (""&-p " )  ax 

If we let Fr2 = 0 and assume a2/ay2 S a2//ax2 we recover Martin & Long's equation: 

In the limit L3+ co, we lose the highest-order derivative and accordingly we should 
expect that a boundary layer exists. This is indeed the case, as Martin & Long demon- 
strated. In the limit Fr2 + co with Fr2L3 finite ( = Re,) we recover the homogeneous 
Oseen equation. 
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3. Discussion of the solution for the line momentum singularity 

The solution given by Janowitz is as follows. 
A uniform flow with speed Uo flows past a line singularity with finite draglwidth D. 

F o r x >  0 

K: K 2  exp ( - ClR x) sin (clz x + 8) cos ( K y )  dK 
J+(x,?d = -- = 'S 0 el2 [(CljlR - <312 + c"u4 [(em - <412 + G11+ 

where 
8 = tan-l (&J - +tan-1 (&)- 

Forx < 0 

Here the 5's are the roots of 

(g2 - K2)2 +Re, c3 + (1  -Re, K2)  5 = 0. (12) 

For K > K$ all the roots of (12) are real. J(x ,  y) is the horizontal component of velocity 
at the point (x, y) due to a singularity at the origin and 

h = (UoV/Pg)f, Re, = UoA/V. 

U7e note that, although there is no specified length scale in Janowitz's problem, h 
occurs as the natural length scale; in the present case the plate length b is the charac- 
teristic length for non-dimensionalization. This gives us a slightly modified version of 
(12) for our case, i.e. 

(13) 

The horizontal velocity upstream and downstream of a point singularity located on 
the plate at  x = 6 is given by (10) and (1 1) with x replaced by x - 6. Thus the term 
J ( x  - 6 )  in the integral representation is given by (10) or (1 1) depending on whether the 
point under consideration is downstream or upstream of the singularity. J ( x  - 6,  y) 
satisfies the far-field boundary conditions, i.e. the perturbations die out, but we must 
also satisfy the no-slip condition on the plate, by requiring that u(x,  0) = - 1 in (7). 
We get the following integral equation for D(E): 

(c2 - K2)2 + L3Fr2C3 + L3( l -  Pr2K2) c = 0. 

u ( z , O )  -1 = J(x-<,O)D(f;)dt ,  0 < z,[ < 1. (14) s:l 
We are faced with an integral equation whose kernel is extremely complex and is given 
in closed integral form by (10) or (1  1) .  Our aim is to determine the drag distribution 
function D(f;)  such that (14), and hence the no-slip boundary condition, is satisfied. 

4. Asymptotic theory for simplification of the kernel 
In  order to solve the integral equation analytically for D(E), we simplify the kernel 

through assumptions based on the physical and mathematical nature of the problem. 
To begin with, we assume that the velocity at a point on the plate is primarily due to 
contributions from singularities in the immediate neighbourhood of that point. We 
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also assume that the major contribution to the kernel J(x  - E, y) comes from large 
values of K .  This follows from the mathematical nature of the problem. The reason 
for this is that the nature of the kernel J (  Iz - [ I ,O)  for 15 - (1 --f 0 is revealed by the 
nature of its Fourier transform as K --f CQ. We first write, for x - f < 0, 

J(x-E,O) = -- 
where 

We rewrite the above expression as 

) d K = j 7 (  ) d K + j r n  KL ( 1 x 9  

where KL 9 1. We consider the asymptotic behaviour of the second integral only, 
because the first has a finite limit and behaves regularly. We also determine the roots 
of the quartic equation (12) for large values of K.  Letting K -+ 00 in ( 8 ) ,  we can show 
that the roots become 

Fr2L3 Fr4L3 1 +-+- + O(K-2), 8K 2Fr2 K 
CI=K--  

2 

Substituting these expressions for Q, c2, etc., in the second integral and taking the 
limit 12 - f l +  0, we get the following expression for the second integral: 

Exactly the same expression is obtained for the downstream case. If we substitute 
Ix - CI = 0 in the above expression we get 

We see that for large values of K and arbitrarily small non-zero values of Ix - the 
singularity is damped as we move away from it. The worst singularity (In K ,  K --f 00) 

occurs at the point where the sink is located, but away from the sink it is damped 
owing to the factor exp ( - Klx- El) in both the upstream and the downstream case. 

Next we replace J2(x - 5, y) by 

This step is essential because we want to invert the kernel analytically to get a closed- 
form expression for it. This can be done by either Fourier cosine or Laplace transform 
techniques, but the lower limit in (15) should be zero. 6 is an undetermined constant 
which has been introduced to avoid introducing a singularity at K = 0. A method for 
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determining S has been described by Chaturvedi & Janowitz (1972). In  effect we have 
assumed that the exact integrand is approximated well by its asymptotic expression 
for large K even for low values of K .  This is justified in view of the fact that smaller K 
values do not contribute as significantly as do the large K values for Ix - 51 3 0. Using 
the above idea we obtain. 

Q) e-z 

x z  
Ei(-x) = -1 -dz. 

On the plate, y = 0 and 

where c = 0.42 -In 8. The integral equation becomes 

1 

0 
4n = 1 [0~42-lnS-ln(~x-~f;J)]D([)d~.  

Differentiating with respect to x we get 

whose solution can be written as 

D ( [ )  = A/[[( 1 - [)I*, A = 4.0/(042 - In 6 + 2 In 2). 

Once the drag distribution has been determined, we can easily evaluate the horizontal 
velocitv from 

where J ( x  - 5, y) is the exact expression. By integration this gives the perturbation 
stream function. 

5. The no-slip condition on the plate 
Since we have obtained the drag distribution function by using an approximate 

kernel, we expect that the no-slip condition on the plate will not be satisfied, i.e. 
u(x, 0) f - 1, where 

The above expression involves a double integral which we evaluate in the following 
manner. Let A be any point on the plate where we wish to evaluate the velocity. Point 
A lies downstream of all singularities from 0 to A and is located upstream of all 
singularities from A to 1.0. Prom the asymptotic theory we know that for very small 
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Distance along the plate 

-, D = 13.4 (1+1.4  E-l*2t')/[E(l-&)]f. 

- 10 04 
FIGURE 2. Error in the no-slip condition for Fra = 0 and Ls = 106. - - -, D = 17.2/[[( 1 - E ) ] ' ;  

values of 1% - 
that result we can divide the above integral into the following three parts: 

we can approximate the exact kernel by the logarithmic kernel. Using 

U ( 2 , O )  = 11 + 121- 13, 

J X--E 

J X + E  

In  figure 2, the dashed line represents u(x,  0 )  + 1 ; it is clear that the no-slip condition is 
not satisfied exactly for this simple drag distribution function. 

6. Evaluation of velocity profiles 
We now compute the velocity profiles and streamlines for various interesting values 

of the parameters L3 and Fr2. The no-slip condition is checked for all cases before 
evaluating the flow field. In  most cases the no-slip condition may be in error by as much 
as 10 %. For such cases the simple drag distribution is unsatisfactory, so that we use 
the following distribution function: 

where A, B and C are undetermined constants. 
D(5) = a 1  + (q-4 k- + cqa 521/"31- 014 

We note here that the dimensionless drag/unit width of the plate, D, is given by 

D = Pu0pE)  0 d5, 

or D/pUo = nA[l+ 0*5(B/B) + 0*375(C/A)] .  (17) 

Using the amended drag function reduces the error in the no-slip condition con- 
siderably (see figure 2). We may write 
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or 

- - -  
We evaluate the above three integrals and then choose suitable values of A,  BIA and 
612 to minimize the error in the no-slip condition on the plate. 

7. Discussion of results 
We evaluate the flow field for Fr2 = 0 and L3 = 105, which corresponds to Martin & 

Long’s case of the upstream boundary layer. The no-slip condition was in error by 
& 8 % when we used the simple drag distribution function. Adding the linear and 
quadratic terms reduces the error to & 2 % (see figure 2 ) ;  in this case 2 = 13-4, 
B/a = 1.4, 6 / B  = 1.2 and D/,uUo = 52.6 while the solution of Martin & Long gives 
D/pUo = 3.08 x (L3)* = 3.08 x 10% = 54.8. For large values of L3, we expect the velocity 
profiles on the plate to be self-similar and to merge with the similarity solution of 
Martin & Long. From figure 3 it is quite evident that the velocity profiles computed 
from our model are in close agreement with the similarity profile. Closer agreement can 
be expected if we increase L3 to still higher values. 

Next, we compare velocity profiles in the upstream wake with Martin & Long’s 
similarity profile, or the identical profile of Long (1959), and note (figure 4) that very 
good agreement exists. We also compare the streamline pattern of the flow field with 
that of Martin & Long. In  the upstream wake closer agreement results as we move 
further upstream of the plate, but near the leading edge our solution differs greatly 
from that of Martin & Long since near the leading edge their solution blows up because 
of their boundary-layer approximation (figure 5). Over the plate, the streamlines 
computed from our model always converged towards the back of the plate as shown by 
Martin & Long (figure 6), and the streamline patterns are in good agreement. The 
horizontal velocity profiles show oscillations characteristic of stratified flows and the 
amount of overshoot predicted by our model is in good agreement with that predicted 
by Martin & Long. Thus we find that, qualitatively speaking, our model exhibits the 
same features as that of Martin & Long. 

In  the preceding case, the effects of inertia were absent. We wish to consider a case 
where inertial effects may be present but the flow is still subtransitional. According to 
Kelly & Redekopp transition will occur when Fr4L3 = O(1); therefore we next con- 
sider the case Fr2 = 0.001 and L3 = lo5, which corresponds to Re,, = 100 and Fr4L3 = 

0.10. The no-slip condition is satisfied in the same fashion as before and in this case 
2 = 10.3, B/a = 2.0, 612 = - 1, B/pUo = 52.6 while the maximum no-slip error is 
about 4 yo. The flow field exhibits the same features as in the preceding case and only 
the velocity profiles are given (figure 7); the overshoots are evident. 

Next we compute the flow field for L3 = lo5 and Fr2 = 0.003, which corresponds to the 
case of a critical boundary layer in which inertia, buoyancy and viscous forces are all 
important (Fr4L3 = 0.9). Here = 13.0, B/A = 1.5, 6/Z = - 1, DlpU, = 56.2 and the 
maximum no-slip error is about 4 yo. In figure 8 we see that the velocity disturbance at  
x = - 1.0 is slightly less than in the preceding case with the overshoots still present and 
that a small but noticeable disturbance exists at  x = 1.5. This is in keeping with the 
fact that an upstream boundary layer with an upstream wake eventually has to switch 
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FIQURE 3. The horizontal velocity profile over the plate for Fr2 = 0 and L3 = lob.  -, Martin 
& Long's solution; - - - , present solution at z = 0.15. 

I I I I I 

-1.0 -0.8 -0.4 0 0.4 0.8 1.0 
Horizontal velocity in upstream wake, u/u,,, 

FIGURE 4. The horizontal velocity profile in the upstream wake for Fr2 = 0 and La = lo6. 
- , Martin & Long's solution; - - - , present solution at z = - 25.0. 

to a downstream boundary layer accompanied by a downstream wake. The stream- 
lines no longer converge towards the back of the plate; those near the plate, e.g. 
@ = 0.01 and @ = 0.05, diverge from the front of the plate and oscillate. Higher 
streamlines, i.e. @ = 0.10 and 0.20, still converge towards the back of the plate and 
they too oscillate (see figure 9). This suggests that for this case the flow field exhibits the 
characteristics of both types of boundary layer. For this case of a critical boundary 
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-13.0 -11.0 -9.0-8.0-7-0-6.0-5.0-4.0-3.0-2.0-14) 0 1.0 2.0 3.0 
-12.0 - 10.0 X Plate 

FIGURL 5. The streamline pattern of the flow field for Fr2 = 0 and L3 = 105. -, Martin & 
Long's solution; - - - , present solution. 

0.04 t 
t 

0 1  I I I I I I I 
0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

Leading Distance over the plate Trailing 
edge edge 

FIGURE 6. The streamline pattern over the plate for Fra = 0 and L3 = lo5. - , Martin & 
Long's solution ; - - - , present solution. 

layer no similarity solution can be found for which the outer flow is uniform. Our model 
does provide us with the qualitative features of the flow field for the case of a critical 
boundary layer. Transition is clearly starting to occur. Martin & Long attempted to 
observe transition by towing their plate at a speed of 1.9 cm/s with b = 91.5 cm and 
/3g = 2.62, which corresponds to Fr3L3 = 2.2. They did not observe a downstream- 
growing boundary layer, which is consistent with our calculations. 

Next we increase Fr2 to determine whether a complete transition to a downstream 
boundary layer has occurred. We choose the following values of the parameters: 
L3 = 105,Fr2 = 0.01 (Fr4L3 = 10). Here2 = 21.8,B/A = 0.45,cI2 = - l ,DlpU, = 58.2 
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- 6.0 - 5.0 - 4.0 

( a )  ( b )  
FI~URE 7. Horizontal velocity profiles upstream of and over the plate for Fra = 0.001 and 

Ls = 10'. (a) x = - CO, (b) x = 0.6. 
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FIGURE 9. The streamline patterns over and upstream of the plate €or Pr2 = 0.003 and Ls = 105. 
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FIGURE 10. The streamline pattern for Fra = 0.01 and L3 = lo6. 
X 

and the no-slip error is a t  most 6 yo. A streamline picture of the flow field suggests 
that a complete transition has not occurred. Streamlines close to the plate diverge from 
the front of the plate as in the case of a homogeneous boundary layer (see figure 10). 
Streamlines oscillate and the waviness can be interpreted as standing waves; this 
indicates that the buoyancy forces are still important. 
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4 rr, 
FIGURE 11. The horizontal velocity profile over the plate for Fr2 = 0.10 and L3 = lo5. 

, Oseen solution; - , present solution at 2 = 0.90. 

FIGURE 
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12. The horizontal velocity profile for Fra = 0.10 and L3 = lo5. -, 
solution; A, present solution at z = 41 ; 0, present solution at z = 61. 

0.2 

0 
0 1 .o 2.0 3.0 4.0 

11 =y (U0Ivx)f 
12. The horizontal velocity profile for Fra = 0.10 and L3 = lo5. -, 

solution; A, present solution at z = 41 ; 0, present solution at z = 61. 
Goldstein's 

Next we consider L3 = lo5 and Fr2 = 0.10, which corresponds to Re, = lo4 (Fr4L3 = 

lo3). Here 2 = 100, B/A = - 1.0, CIA = 0.4, D/pUo = 204-2 and the maximum no-slip 
error is 3 %. Piercy & Winny give n/pUo = 2.257 x Re,+ = 225.7 for homogeneous 
Oseen flow. This is the case of very high inertia and the upstream wake has completely 
disappeared, indicating that we are approaching the homogeneous limit. On the plate, 
the velocity profiles compare quite well with the profiles for the case of Oseen flow of a 
homogeneous fluid (figure 11) and the disturbance now extends far downstream. Very 
far downstream we expect the velocity profiles to be in close agreement with the simi- 
larity profile obtained by Goldstein (1930). A comparison of the velocity profile 60 plate 
lengths downstream with Goldstein's similarity profile shows excellent agreement 
(figure 12). We have also plotted some streamlines which lie very close to the plate 
(inside the boundary layer). From figure 13 we find that all streamlines now diverge 
from the leading edge of the plate and in the downstream wake they are brought back 
to their undisturbed heights. The waviness of the streamlines is absent, which suggests 
that generation of vorticity due t'o buoyancy in the upstream wake is absent. Another 
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0‘04 r IJ = 0.02 
0.03 - 

0 1  I I I 1 
- 1.0 0 1 .o 2.0 3.0 

Distance along the plate, x 

FIGURE 13. The streamline pattern for Fr2 = 0.10 and L3 = lo6. 

important feature of stratified flows, the so-called jets or velocity overshoots, has 
almost disappeared. Thus we find that increasing the inertia forces switches the up- 
stream boundary layer to a downstream layer. 

8. Conclusions 
The results show that our model qualitatively describes the features of the flow 

field for a wide range of the internal Froude number. During the course of this investi- 
gation Fr2 was varied from 0 to 0.1 and Fr4L3 from 0 to lo3. Large values of La with 
Fr2 = 0 correspond to the case of an upstream boundary layer. Martin & Long’s 
boundary-layer approximation is valid only for large L3 whereas our results are uni- 
formly valid for all values of L3, since no boundary-layer approximation was made in 
our analysis. A large value of L3 and Fr2 = 0.10 corresponds to the case of a down- 
stream-growing boundary layer and a downstream homogeneous wake. Fr2 = 0.003 
and L3 = lo5 (Fr4L3 = 0.9) corresponds to the case of a critical boundary layer which 
has the characteristics of both the boundary layers blended together, and no similarity 
solution to the equations for a critical boundary layer can be found for which the 
outer flow is uniform. Our model gives us a qualitative picture of the flow field for the 
case of a critical boundary layer. For this case and for the case Fr2 = 0.01 and L3 = lo5, 
we observe standing waves over the plate. We interpret the existence of these waves as 
a mechanism for dissipating the upstream wake. There is no sharp point of transition 
as the parameter Fr2 varies. With increasing values of Fr2, the upstream influence 
decreases whereas the downstream influence increases and eventually a complete 
switch takes place when 10 < Fr4L3 < 1000. We also found that the drag coefficient 
predicted by our model is in close agreement with other existing results (e.g. Martin 
& Long 1968; Piercy & Winny 1933). For still higher values of Pr2 we expect all 
important features of the stratified flow to disappear completely and in the limit we 
get the homogeneous case. Our modelling of the situation by Oseen flow confirms the 
assertion of Stewartson (1968) that Oseen’s equation should provide us with the gross 
features of the flow field. 
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